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ABSTRACT

Algorithms such as Least Median of Squares (LMedS) and Ran-
dom Sample Consensus (RANSAC) have been very successful for
low-dimensional robust regression problems. However, the combi-
natorial nature of these algorithms makes them practically unusable
for high-dimensional applications. In this paper, we introduce
algorithms that have cubic time complexity in the dimension of
the problem, which make them computationally efficient for high-
dimensional problems. We formulate the robust regression problem
by projecting the dependent variable onto the null space of the in-
dependent variables which receives significant contributions only
from the outliers. We then identify the outliers using sparse repre-
sentation/learning based algorithms. Under certain conditions, that
follow from the theory of sparse representation, these polynomial
algorithms can accurately solve the robust regression problem which
is, in general, a combinatorial problem. We present experimental
results that demonstrate the efficacy of the proposed algorithms. We
also analyze the intrinsic parameter space of robust regression and
identify an efficient and accurate class of algorithms for different
operating conditions. An application to facial age estimation is
presented.

Index Terms— Robust Regression, Sparse Representation,
Sparse Bayesian Learning

1. INTRODUCTION

The goal of regression is to estimate the parameters of a model re-
lating two sets of variables, given a training dataset. However, the
presence of outliers in the training dataset will make this estimate un-
reliable. Outliers are those data that differ markedly from other data
present in the dataset. Real world data is almost always corrupted
with outliers and hence robust parameter estimation is of paramount
importance.

Solving the robust regression problem requires estimating the
parameters of the model, and identifying the outliers. Since any sub-
set of the data could be outliers, this is a combinatorial problem in
general. There are two major approaches [1] for solving the robust
regression problem: i) Estimate the parameters of the model using a
robust cost function and then identify the outliers as data that devi-
ate by a large amount from the model. M-estimators [2], LMedS [1]
and RANSAC [3] follow this approach. The second approach is: ii)
First identify the outliers, remove them and then use a (non-robust)
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regression algorithm like Least Squares (LS) to estimate the model
parameters.

M-estimators [2] are a generalization of maximum likelihood
estimators (MLEs) where the (negative) log likelihood function of
the data is replaced by a robust cost function. Amongst the many
possible choices of cost functions, redescending cost functions [2]
are the most robust ones. These cost functions are non-convex and
the resulting non-convex optimization problem has many local min-
ima. Generally, a polynomial algorithm called iteratively reweighted
least squares (IRLS) [2] is used for solving the optimization prob-
lem which often converges to local minima. The quality of pa-
rameter estimation depends on a good initialization which itself is
very difficult to obtain, especially for high-dimensional problems.
The LMedS technique [1] is another widely used robust regression
method. In LMedS, the median of the squared residuals is mini-
mized. A random sampling algorithm [1] is used for solving this
problem. This algorithm is combinatorial in the dimension (number
of the parameters) of the problem which makes LMedS impractical
for high-dimensional regression problems. The RANSAC algorithm
[3] and its improvements such as MSAC, MLESAC [4] are the most
widely used and successful robust methods in computer vision [5].
RANSAC estimates the model parameters by minimizing the num-
ber of outliers, which are defined as data points that have residual
greater than a pre-defined threshold. A similar random sampling al-
gorithm is used for solving this problem which makes RANSAC,
MSAC and MLESAC impractical for high-dimension problems.

There are many heuristic methods that follow the second ap-
proach of first identifying the outliers, however, most of them fail in
the presence of multiple outliers [1]. In this paper, we take a sys-
tematic approach towards outlier identification. We formulate the
robust regression problem by projecting the dependent variable onto
the null space of the independent variables. This projection receives
significant contributions only from the outliers. The robust regres-
sion problem in this form is exactly of the same form as the sparse
representation/learning problem [6, 7, 8, 9]. We then use polyno-
mial algorithms such as Basis Pursuit [6, 7] and the sparse Bayesian
learning algorithm [8, 9] to solve the robust regression problem. Un-
der certain conditions [7, 10], these algorithms can accurately solve
the sparse learning problem which in turn implies an accurate solu-
tion for the robust regression problem. We also undertake theoretical
and empirical studies of the intrinsic parameter space of the robust
regression problem to identify efficient and accurate class of algo-
rithms for different operating conditions. By intrinsic parameters of
robust regression, we mean: the outlier fraction f , the dimension-
ality of the problem D, the number of data points N and the inlier
noise variance σ2.
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We would like to note that a similar mathematical formulation
arises when considering channel coding problem over the reals,
which is addressed in [11].

2. ROBUST REGRESSION AND SPARSE LEARNING

We consider a simple linear regression model, where the dependent
variable y is related to the independent variable x and a parameter
vectorw through the relation:

y = w0 + x1w1 + · · ·+ xDwD + e

= x
T
w + e (1)

where e is the observation noise. In regression, the objective is to
estimate w from a training dataset of N observations (yi,xi), i =
1, 2 · · · , N . In the absence of outliers, ei = ni where nis’ are
generally considered as independent, zero mean Gaussian noise. In
the presence of outliers, the observation error ei can be modeled as
ei = ni + si where ni and si are independent of each other, ni

is the inlier Gaussian noise and si represents the outlier error. The
regression model then becomes:

yi = xi

T
w + ni + si

The above model can also be written as

y = Xw + n + s (2)

wherey = (y1, . . . , yN )T ,n = (n1, . . . , nN )T , s = (s1, . . . , sN)T

andX = [x1, . . . , xN]T .
Our goal is to estimate w while being robust to outliers. Simi-

lar to RANSAC, a robust way to do this will be to find a w which
minimizes the number of outliers. Mathematically this can be stated
as:

min
s,w

||s||0 such that ||y −Xw− s||2 ≤ μ (3)

where ||s||0 is the L0 norm of s which counts the number of non-
zero elements in s, μ is a threshold which depends on the variance
of the inlier noise n. The problem in (3) has two unknowns: w

and s. It can be simplified by removing one of the unknowns, the
parameterw, by projecting y onto the left null space ofX. The ma-
trix X has dimension N × D where the rows correspond to the N
data points and the columns correspond to the D dimensions, with
N > D. The N -dimensional columns of X span a D-dimensional
subspace, known as the column space. This is assuming that the
columns are linearly independent; if they are not, then one can re-
duce the dimensionality of the problem by eliminating the dependent
columns. The orthogonal complement to the column space of X is
the left null space of X which is a (N −D) dimensional subspace.
LetC be a matrix whose rows form an orthonormal basis for the left
null space ofX, that is,C is a (N −D)×N matrix withCX = 0.
Pre-multiplying (2) by C, we get

Cy = CXw + Cn + Cs

z = g + Cs (4)

where z = Cy and g = Cn, which is again Gaussian noise.
The robust regression problem stated in (3) now becomes:

min
s

||s||0 such that ||z−Cs||2 ≤ ε (5)

where ε = μ
p

(N −D)/N . This formulation is an equivalent but
a simpler version of (3). Once we find s, by solving (5), we can

identify the outliers as those data that correspond to the non-zero
entries of s. We can then remove these outliers and find the least-
squares (LS) estimate of w using the remaining data. Note that the
LS estimate is statistically optimal for Gaussian noise.

A naive way to solve (5) would be to do a combinatorial search.
However, recently there has been a lot of work on sparse represen-
tation/learning [6, 7, 8, 9] which essentially tries to solve the above
problem. Two of the major approaches for solving the sparse learn-
ing problem are: 1) the convex relaxation approach [6, 7] and 2)
the Bayesian approach [8, 9]. The convex relaxation approach is
also related to the emerging field of Compressive Sensing (CS) [10].
We use these two approaches to develop two robust regression algo-
rithms.

2.1. Basis Pursuit Robust Regression

Instead of solving (5), we solve the following problem:

min
s

||s||1 such that ||z−Cs||2 ≤ ε (6)

The above problem is a convex relaxation of the original problem
(5), in which the L0 norm has been replaced by the L1 norm [7].
(6) is closely related to Basis Pursuit Denoising [7, 6] and we will
refer to the robust regression algorithm that uses this algorithm as
the Basis Pursuit Robust Regression (BPRR). It has been shown in
[10, 7] that if s was sparse to begin with then under certain condition
(‘Restricted Isometry Property’ or ‘incoherence’) on the matrix C,
(5) and (6) will have the same solution up to a bounded uncertainty
due to ε. However, in our case, C depends on the training dataset
and may not satisfy those conditions.

2.2. Bayesian Sparse Robust Regression

The Bayesian approach for solving (5) is known as the sparse
Bayesian learning approach [8, 9]. In this approach, a sparsity en-
forcing prior is imposed on s. Each element of s is assumed to be a
zero-mean Gaussian random variable

p(s|α) =
NY

i=1

N (si|0, αi
−1)

where α is a vector of hyper-parameters. An individual hyper-
parameter is associated with each element of s. The likelihood term
is given by

p(z|s, σ2) = N (z−Cs, σ2)

where σ2 is the variance of the Gaussian noise Cn. During infer-
ence, the hyper-parameters αi and σ are first estimated using the
evidence maximization framework[8] which are then used for find-
ing the MAP estimate of s. We will, henceforth, refer to the robust
regression algorithm that uses this algorithm as Bayesian Sparse Ro-
bust Regression (BSRR).

The regression model in (1) is linear in both the unknown pa-
rameter w and the independent variable x. However, all the above
analysis also applies to models linear only in w, that is, models of
the form

y =

M−1X
j=0

wjφj(x) + e

= w
Tφ(x) + e (7)

where φj(x) could be nonlinear functions of x.
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Fig. 1. Mean angle error in degrees vs. outlier fraction for dimension 2, 8 and 32 respectively. Only BSRR, BPRR, M-estimator and L1

regression are shown for dimension 32 as the other algorithms are too slow to be practical. BSRR performs very well for all the dimensions,
more so for dimension 32 where the performance of the other feasible algorithms such as BPRR, M-estimators and L1 regression degrades
considerably.

3. THEORETICAL AND EMPIRICAL STUDIES OF THE
INTRINSIC PARAMETER SPACE OF ROBUST

REGRESSION

The four important intrinsic parameters of the robust regression
problem are the outlier fraction f , the dimensionality of the prob-
lem D, the number of data points N and the inlier noise variance
σ2. Here, we study the performance of the proposed algorithms,
BPRR and BSRR, and compare it to that of M-estimators, LMedS,
RANSAC, MSAC and L1 regression (least absolute errors regres-
sion). The performance criteria are regression accuracy and compu-
tational complexity. We first discuss the theoretical computational
complexity of the algorithms and then empirically study them for
regression accuracy.
BPRR and BSRR have a computational complexity of O(N3 +

D3). The IRLS algorithm, used for solving the M-estimators, has a
complexity ofO(D3/3+D2N) and the complexity ofL1 regression
is O(N3). None of them have any direct dependence on f or σ2.
The number of selections k that the random sampling algorithm in
LMedS, RANSAC and MSAC have to make to successfully find a
good solution with probability p is given by [3]

k = min (
log(1− p)

log(1− (1− f)D)
,

 
N

D

!
) (8)

So, these algorithms are combinatorial in D. We can easily con-
clude from this discussion that BSRR, BPRR, M-estimators and L1

regression are the feasible algorithms for high-dimensional robust
regression problems whereas LMedS, RANSAC and MSAC are not.
Next, we perform a series of experiments using synthetically

generated data. The inlier data is obtained by sampling a Gaus-
sian distribution η(0, σ2I) around a randomly generated (D − 1)-
dimensional hyperplane in a RD space. The outlier data is obtained
by uniformly sampling a bounded space containing the hyperplane.
Regression accuracy is measured by the angle error between the esti-
mated normal to the hyperplane and the ground truth normal. BSRR,
BPRR, RANSAC and MSAC need estimates of the inlier noise stan-
dard deviation which we provide as the median absolute residual
of the least squares estimate. We have used the MATLAB imple-
mentation of bisquare (Tukey’s biweight) M-estimator. Other M-
estimators give similar results.
In the first experiment, we study the performance of the algo-

rithms as a function of outlier fraction and dimension. The number
of data points was fixed at 1000 and noise variance σ2 at 4. Fig.
1 shows the variation of mean angle error with outlier fraction for
dimension 2, 8 and 32. For dimension 32, we only show BSRR,

BPRR, M-estimator and L1 regression as the other algorithms are
too slow to be practical. BSRR performs very well for all the dimen-
sions, more so for dimension 32 where the performance of the other
feasible algorithms such as BPRR, M-estimators and L1 regression
degrades considerably. At low-dimensions, MSAC also gives good
performance.

Next, we vary the dimension while keeping the number of data
points fixed at 5000, the outlier fraction at 0.4 and noise variance σ2

at 4. Fig. 2 shows that BSRR performs very well up to dimension
128. BSRR performs well at even higher dimensions if the number
of data points is increased proportionally with the dimension. The
time taken by BSRR was about 6 minutes for all the dimensions.
We do not show LMedS, RANSAC and MSAC results as they are
impractical for dimension 16 onwards. BPRR is also slow and hence
was not studied here.
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Fig. 2. Mean angle error vs. dimension for outlier fraction 0.4.
BSRR performs very well upto dimension 128. It can perform well
at even higher dimensions if the number of data points is increased
proportionally with the dimension.

We also study the effect of inlier noise variance on the perfor-
mance of the algorithms. For this we fixed the dimension at 8, the
outlier fraction at 0.4 and the number of data points at 1000. Fig. 3
shows that BSRR performs robustly for a wide range of inlier noise
variances. From the above experiments, we can easily conclude that
BSRR should be the preferred algorithm for high-dimensional robust
regression problems. At low-dimensions both BSRR and MSAC
show good performance.
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Fig. 3. Mean angle error vs. inlier noise standard deviation. BSRR
performs well for a wide range of inlier noise variance.

4. ROBUST REGRESSION FOR AGE ESTIMATION

In this section, we use the BSRR algorithm for robust age estimation
from face images. We use the publicly available FG-Net dataset 1,
which contains 1002 facial images of 82 subjects along with their
ages. The dependent variable for this problem is the age and the
independent variable is a geometric feature obtained by computing
the flow field at 68 fiducial features on each image with respect to a
reference face image.
We use the BSRR algorithm to categorize the whole dataset into

inliers and outliers. The algorithm found 177 outliers out of the total
database of 1002 images. Some of the inliers and outliers are shown
in figure 4. Most of the outliers were images of older subjects. The
reason for this could be due to the fact that the geometric features
do not vary much in older subjects and that there are less number of
samples of older subjects in the FG-Net database. Next, we perform
a leave-one-out testing in which the regression algorithm is trained
on the entire dataset except for one sample on which testing is done.
We measure the mean absolute error (MAE) of age estimation for
inliers and outliers separately. The results are shown in Table 1. The
low inlier MAE and the high outlier MAE indicates that the inlier vs
outlier categorization was good.

Inlier MAE Outlier MAE All MAE

BSRR 3.73 19.14 6.45

Table 1. Mean absolute error (MAE) of age estimation for inliers
and outliers using BSRR. The low inlier MAE and the high outlier
MAE indicates that the inlier vs outlier categorization was good.

5. CONCLUSIONS

We presented a systematic approach towards outlier identification
by noting that the projection of the dependent variable onto the null
space of the independent variables has significant contributions only
from the outliers. We then proposed two algorithms, BSRR and
BPRR, to solve the resulting problem. These are polynomial algo-
rithms and hence can be used for solving high-dimensional robust
regression problems. We also performed an empirical study on the
intrinsic parameter space of robust regression which highlighted the
excellent performance of BSRR under varying operating conditions.

1The fg-net aging database, http://www.fgnet.rsunit.com

Fig. 4. Some outlier and inliers found by BSRR. Most of the outliers
were images of older subjects. The reason for this could be due to the
fact that the geometric features do not vary much in older subjects
and that there are less number of samples of older subjects in the
FG-Net database.
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